

The exhilarator

Once you have experienced the thrill of the wind filling the spinnaker, you are sure to be hooked on spinnaker sailing. Seldén brings this sensation to yachtsmen all over the world through its complete range of easy-to-use aluminium and carbon spinnaker poles and accessories.

SPINNAKER & GENNAKER poles and accessories

Aluminium spinnaker poles	130
Telescopic poles	132
Jockey poles	132
Setting a spinnaker	133
Carbon spinnaker poles	134
Selecting the right pole	136
Spinnaker pole kits	140
Spinnaker halyard attachments	142
Spinnaker pole attachments	143
Spinnaker pole fittings	146
Spinnaker pole heel lift system	148
Vertical pole stowage	149
Gennaker bowsprit	150

Aluminium spinnaker poles

Seldén aluminium spinnaker poles give you fast and safe spinnaker handling. All the fittings have well-rounded edges to prevent personal injury and damage to equipment. The extrusions are lightweight and very durable, and are fitted with pole savers to shield the pole against damage from forestay and shrouds.

Composite end fittings are available for our Ø 48-Ø 96 poles. These fittings are normally used for end-for-end gybing but can be used for vertical pole stowage and dip gybing as well.

Our traditional aluminium fittings for dip gybing are available for the \emptyset 72- \emptyset 111 sections.

Trip trigger

All aluminium fittings and composite fittings for \emptyset 72- \emptyset 111 poles are available with a trip trigger function. You open the end fitting with a control line and the sheet locks it automatically. This makes life easier for the fore-deck crew.

Four good ways

There are four basic ways to handle the spinnaker. The end-for-end method, with the topping lift and downhaul attached to the centre of the spinnaker pole, is most suitable for boats up to 25 feet in length. Another endfor-end method, with the topping lift at the centre of the pole and

Small composite end fitting with stainless chafe guard and Dyneema bridle for downhaul.

Medium composite end fitting with stainless chafe guard, trip trigger and Dyneema bridle for downhaul.

The aluminium extrusions are fitted with pole savers to shield the pole against damage from forestay and shrouds.

the downhaul attached to the outboard end, is best for masthead rigged boats (max. 33 ft) and fractionally rigged boats (max. 40 ft). The third method, dip pole, is suitable for larger boats. The fourth way, twin pole arrangements, is recommended for yachts ranging from 40 feet and upwards. Twin poles make it much easier and safer to gybe with the spinnaker on a big yacht.

Section data

	Section dia., mm	l _y cm⁴	l _x cm⁴	Wall thick- ness, mm	Weight kg/m
\triangle	48/48	7.65	7.65	2.0	0.75
-t)*	60/60	15.4	15.4	2.0	1.00
×	72/72	29.9	29.9	2.2	1.38
(84/84	48.0	48.0	2.2	1.53
- { **€}Y	96/96	72.3	72.3	2.2	1.76
$\mathbf{\nabla}$	99/99	123	123	3.6	2.65
X	111/111	197	197	4.1	3.38
- Contraction of the second se	140 x 3*	303	303	3.0	3.17

Composite spinnaker pole fittings

A lightweight composite fitting for fast and easy spinnaker handling. Stainless, spring loaded plunger. These fittings can be used for end-for-end gybing as well as vertical pole stowage and dip gybing.

Spinnaker poles with composite fittings come with Dyneema-core bridles for topping lift and downhaul. Can be secured in place without removing the fittings from the tube, which also makes it easier to change or adjust the bridles.

* Only available with Harken end fittings.

Telescopic pole, can be extended to 150% of normal spinnaker pole length, a must when poling out a large genoa or a gennaker. It can be telescoped down for easier stowage.

Telescopic pole. Maximises your downwind performance. Minimises your stowage problem.

Art. No.	RM 30° kNm	Displ. tonnes	Section dia., mm Weight		Weight	Min. length for stowage	Spinnaker pole postion	Whisker pole heavy conditions	Whisker pole light conditions	
			Inner	Outer	kg	mm	mm	mm	mm	
060-060-58	18	3.6	48	60	6	2530	3000	3600	4500	
072-072-61	35	6.3	60	72	10	2950	3500	4200	5250	
084-084-60	55	9.0	72	84	13	3280	3900	4875	5820	

The jockey pole reduces the loads and minimises the wear on guys and life lines.

*096-096-59 includes inboard end 534-778-04 and requires male fitting 508-149-01 at the mast.

Art. No.	RM 30° kNm	Sec- tion	Total length mm
060-060-55	26	60/60	1810
060-060-56	35	60/60	2010
072-072-58	43	72/72	2030
072-072-64	55	72/72	2230
084-084-58	90	84/84	2480
096-096-58	250	96/96	2760
096-096-59*	250	96/96	2840

Ready, set, go

Hook up the spinnaker. Set up the spinnaker pole, topping lift and downhaul. Adjust the pole to suitable sailing trim. Haul in the windward guy. Also, haul in the leeward sheet to prevent the sail from twisting.

Hoist the spinnaker. It is a good idea if someone assists at the mast. Let the halyard run through a closed rope stopper. That way, you will not lose it if it fills early.

Make sure that the spinnaker runs free from the bag or through the forepeak hatch.

Call out "Top!" when the spinnaker is fully hoisted.

Adjust the guy and sheet.

Tidy up and hand in the jib.

When taking down the spinnaker, release the halyard first, followed by the leeward sheet. Do not release the windward guy until the spinnaker is fully down. If you want to read more about spinnaker sailing please order our free brochure, Using a spinnaker, Art. No. 595-560-E.

Carbon spinnaker poles

Seldén quality

We have developed our own computer controlled manufacturing method in which prepreg (pre-impregnated) tows are wound onto a mandrel (cylinder) prior to oven curing. This method enables us to exercise full control over every stage of the manufacturing process and guarantee products of consistently high quality. One of the big advantages of this Seldén production method is that it enables us to achieve sufficient durability in the areas subject to the greatest loads and wear.

In all sizes

Seldén carbon spinnaker poles are suitable for dinghies and for yachts up to 30 tonnes. The larger poles are tapered to optimise weight/strength requirements, and facilitate handling.

Seldén spinnaker poles are designed to make light work of spinnaker handling. The big advantage of carbon fibre is its low weight. The weight savings enable the crew to handle the spinnaker faster, with less effort.

Harken end fitting for larger poles.

Weight comparison – aluminium and carbon spinnaker poles (equal strength). Aluminium spinnaker pole Section 99/99, length 5150 mm, weight 16.9 kg. Carbon spinnaker pole Section 102/102, length 5150 mm, weight 9 kg.

Seldén carbon spinnaker poles

Туре	Section dia., mm	Weight kg/m	Inertia Al-equivalent cm ⁴
Untapered tube	47	0.33	5.4
	59	0.42	10.8
	61	0.59	18.5
	77	0.65	42.3
	88	1.00	63
	90	1.26	88
Tapered tube	102	1.15	134.6
	119	1.68	217
	137	1.94	335
	156	2.69	508
	158	3.15	642

Twaron protection can be supplied as an option. Twaron filaments protect the pole from damage caused by the forestay and shrouds.

Selecting the right pole

Just look in the appropriate table for your yacht's displacement or righting moment (RM) at 30° heel, then look right for the value exceeding your SPL or J value (shown in the sail plan).

Example: For an aluminium spinnaker pole. Yacht displacement 8.0 tonnes, SPL is 6100 mm. The correct section is 99/99.

Table terminology

RM: Righting moment at 30° of heel.

SPL (J): Maximum spinnaker pole length for your yacht.

A whisker pole should be approximately as long as the foot of the sail you intend to pole out.

Topping lift

When SPL is within 500 mm of a dimension shown in **bold blue**, a bridle topping lift is recommended if downhaul is at outboard end of pole. For 99/99 and larger diameter poles, use outboard end lift only.

Downhaul

Poles should have downhaul attached via a bridle or at outboard end. If a central attachment is desired, the pole diameter must be increased to the next size up.

Aluminium spinnaker pole selection max SPL (mm)

RM 30° kNm	Displ. tonnes	48/48	60/60	72/72*	84/84*	96/96	99/99	111/111	140/140
8	1.6	3000							
10	2.0	2700							
12	2.4	2500	3600						
14	2.8	2400	3500						
16	3.2	2350	3400						
18	3.6	2300	3300						
20	4.0	2250	3200	4650					
25	5.0		3000	4250					
30	5.7		2850	3905	5010				
35	6.3		2730	3720	4710				
40	7.0		2600	3250	4460	5480			
45	7.7			3360	4260	5230			
50	8.2			3220	4080	5010	6530		
55	9.0				3930	4820	6290		
60	10					4660	6070		
70	11					4380	5710	7230	
80	12					4150	5410	6580	
90	14						4950	6540	8110
100	15						4770	6270	7770
110	16						4600	6030	7480
120	18							5830	7230
130	19							5640	7000
140	20							5330	6790
150	22							5190	6600
160	23							4950	6440
180	26							4750	6140
200	28								5890
220	31								5670
240	34								5480

* Max available SPL with composite end fittings, attached to a fixed mast ring. If the pole is to be "Dip Gybe", max available SPL is increased by 165 mm.

Aluminium whisker pole selection max pole length (mm)

RM 30° kNm	Displ. tonnes	48/48	60/60	72/72	84/84	96/96	99/99
12	2.4	3200					
14	2.8	3200					
16	3.2	3200					
18	3.6	3200					
20	4.0	3150	4700				
25	5.0	2800	4700	5240			
30	5.7	2550	4700	5240	5240		
35	6.3		4400	5240	5240		
40	7.0		4100	5210	5240		
45	7.7		3800	4970	5240		
50	8.2		3650	4770	5240	6280	
55	9.0			4590	5240	6280	6530
60	10			4430	5240	6280	6530
70	11				5240	6280	6530
80	12				5010	6140	6530
90	14					5860	6530
100	15						6530
110	16						6530

Downhaul

Poles should have the downhaul attached via a bridle or at the outboard end. If a central attachment is desired, the pole diameter must be increased to the next size up.

Topping lift/Downhaul Central attachment points for lift and downhaul are not available. End-for-end poles have optional bridles made from the core of spectra rope. Poles for dip gybe always use the outboard end attachments.

Table terminology

RM: Righting moment at 30° of heel.

SPL (J): Maximum spinnaker pole length for your yacht.

A whisker pole should be approximately as long as the foot of the sail you intend to pole out.

Carbon spinnaker pole selection max SPL (mm)

RM 30° kNm	Displ. tonnes	47/47	59/59	61/61	77/77	88/88*	90/90*	102/102	119/119	137/137	156/156	158/158
8	1.6	2850										
10	2.0	2610	3710									
12	2.4	2430	3450	4490	4810*							
14	2.8	2280	3420	4220	4810*							
16	3.2	2160	3070	4000	4810*							
18	3.6	2070	2930	3820	4810*							
20	4.0		2810	3660	4810*	5450*						
25	5.0		2750	3350	4810*	5450*						
30	5.7		2390	3110	4710	5450*	5450*					
35	6.3			2930	4430	5440	5450					
40	7.0				4200	5160	5450	6500				
45	7.7				4000	4920	5450	6500				
50	8.2				3840	4720	5450	6500	8500			
55	9.0					4540	5330	6500	8360			
60	10					4390	5150	6360	8080			
70	11					4120	4840	5980	7590	9370		
80	12					3910	4590	5670	7200	8950		
90	14					3730	4380	5410	6870	8540	9370	
100	15						4200	5190	6590	8180	9370	
110	16							4990	6340	7880	9370	
120	18							4820	6120	7610	9360	
130	19							4670	5930	7370	9070	
140	20							4530	5760	7150	8800	9370
150	22								5600	6960	8560	9370
160	23								5460	6780	8340	9370
180	31								5210	6470	7960	8980
200	32								4990	6200	7630	8610
220	34								4810	5970	7350	8290
240	35									5770	7090	8000
260										5590	6870	7750

* Max available SPL with composite end fittings, attached to a fixed mast ring. If the pole is to be "Dip Gybe", max available SPL is increased by 65 mm.

Carbon whisker pole selection max pole length (mm)

RM 30° kNm	Displ. tonnes	47/47	59/59	61/61	77/77	88/88*	90/90*	102/102	119/119	137/137	156/156
8	1.6	3700									
10	2.0	3700									
12	2.4	3580	5100								
14	2.8	3380	4800	5230							
16	3.2	3200	4550	5230							
18	3.6	3060	4340	5230	4810*						
20	4.0	2930	4160	5230	4810*						
25	5.0	2680	3810	4950	4810*	5450*					
30	5.7		3540	4600	4810*	5450*	5450*				
35	6.3		3330	4330	4810*	5450*	5450*				
40	7.0		3150	4100	4810*	5450*	5450*				
45	7.7			3920	4810*	5450*	5450*	6500			
50	8.2			3750	4810*	5450*	5450*	6500			
55	9.0			3610	4810*	5450*	5450*	6500	8500		
60	10				4810*	5450*	5450*	6500	8500		
70	11				4810*	5450*	5450*	6500	8500	9370	
80	12				4710*	5450*	5450*	6500	8500	9370	
90	14					5450*	5450*	6500	8500	9370	9370
100	15					5280	5450*	6500	8500	9370	9370
110	16					5080	5450*	6500	8500	9370	9370
120	18						5450*	6500	8500	9370	9370
130	19						5450*	6500	8500	9370	9370
140	20						5430	6500	8500	9370	9370
150	22							6500	8290	9370	9370
160	23							6360	8080	9370	9370
180	31							6070	7710	9370	9370
200	32							5820	7390	9180	9370
220	34								7110	8840	9370
240	35								6870	8540	9370
260										8270	9370

* Max available SPL with composite end fittings, attached to a fixed mast ring. If the pole is to be "Dip Gybe", max available SPL is increased by 65 mm.